Selective Hydrogenation of the Internal Double Bond of Penta-1,3-diene on a ZnO Catalyst

By TOSHIO OKUHARA and KEN-ICHI TANAKA* (Research Institute for Catalysis, Hokkaido University, Sapporo, Japan)

Summary The hydrogenation of penta-1,3-diene has been studied over various catalysts (MoS_2 , ZnO, Cr_2O_3 , and Co_3O_4) which normally lead to predominant 1,2- rather than 1,4-addition of hydrogen; ZnO led to hydrogenation of the internal double bond with high (87.3%) selectivity, by 3,4-addition.

ALTHOUGH selective catalytic hydrogenation of the internal double bond of alkadienes yielding mainly α -olefins would be a useful process, only a few homogeneous or heterogeneous catalysts have been reported. Wells and Wilson¹ found that the hydrogenation of penta-1,3-diene on Cu-Al₂-O₃ yielded 69% of pent-1-ene in the product, and Pregaglia *et al.*² obtained 60% selectivity in pent-1-ene formation with [RhH(PPh₃)₄] as catalyst. More recently, Kawakami *et al.*³ have reported a novel catalyst composed of [CoBr-(PPh₃)₈] and BF₃-Et₂O which is active for the hydrogenation of the internal double bond of conjugated dienes; hydrogenation of penta-1,3-diene yielded 74% of pent-1ene. We have found a remarkably selective 3,4-addition of hydrogen to penta-1,3-diene (a mixture of 60% trans and 40% cis isomers) on a ZnO catalyst (Kadox-25 from New Jersey Zinc Co.) pretreated in vacuo at 450 °C for several hours.

It is known that the deuteriation of butadiene on such catalysts as MOS_2 ,⁴ ZnO,⁵ Cr_2O_3 (from thermal decomposition of ammonium dichromate; 16 m² g⁻¹),⁶ Co_3O_4 (from thermal decomposition of cobalt nitrate; 2 m² g⁻¹),⁷ MgO,⁸ ThO₂,⁹ and ZrO_2^{10} gives mainly the [²H₂]-adducts, *i.e.*, the deuterium molecular identity is maintained in the hydrogenated products. The position of deuterium in these [²H₂]-adducts has been determined by microwave or n.m.r. spectroscopy; MOS_2 , ZnO, and Cr_2O_3 yield mainly 1,2-adducts while Co_3O_4 , MgO, ThO₂, and ZrO₂ have a preference for 1,4-addition.

Effective catalysts for the hydrogenation of the internal double bond of alkadienes might be expected to be those having a preference for 1,2-addition of hydrogen, and we have studied the hydrogenation of penta-1,3-diene over a variety of such catalysts. In this hydrogenation *trans*- and cis-pent-2-ene are formed by either 1,2- or 1,4-addition of hydrogen, but pent-1-ene is formed only by 3,4-addition. As shown in Table 1, ZnO shows remarkably high selectivity yield [1,4-2H2]-cis-pent-2-ene. Thus, the relative importance of 1,2- and 1,4-addition in the formation of cis-pent-2ene can be estimated from the n.m.r. data. Calculations

Table 1.	Hydrogenation	of penta-1,3-diene	on various	catalysts at room	temperature.
----------	---------------	--------------------	------------	-------------------	--------------

Catalyst	% Conversion	Relative proportions of products					
		Pentane	Pent-1-ene	trans-Pent-2-ene	cis-Pent-2-ene		
MoS_2	$45 \cdot 2$	10	$25 \cdot 8$	48.9	15.2		
ZnO	80.0		87.3	2.8	9.9		
Cr_2O_3	69.0	11.4	4.5	64.4	19.7		
Co ₃ O ₄	39.3		20.9	42.0	37.0		

for the 3,4-addition of hydrogen, yielding pent-1-ene, with conversions as high as 80%, when the reaction was performed in a circulating system (ca. 400 ml) with a mixture of hydrogen and pentadiene [ca. 50-60 mmHg; $P(H_2)/P$ - $(C_5H_8) = ca. 2-3$]. As shown in Table 2, deuteriation of

indicate that 1,4-addition accounted for a major proportion (70%) of the formation of cis-pent-2-ene. This demonstrates that the ZnO catalyst brings about almost perfect selectivity for the hydrogenation of the internal double bond of penta-1,3-diene because the contribution of 1,2-

TABLE 2. N.m.r. analysis of pent-2-ene and pent-1-ene formed by the deuteriation of penta-1,3-diene on ZnO at room temperature.

	Deuterium distribution (%) $(0\% \lceil^2 H_0\rceil)$			Distribution of ¹ H in labelled product (values for unlabelled pentenes in parentheses) ^a				
Product (%)	$[{}^{2}H_{1}]$	[²H ₂]	$[{}^{2}H_{3}]$	C(1)	C(2)	C(3)	C(4)	C(5)
Pent-1-ene (87·3)	$2 \cdot 4$	93.2	$4 \cdot 3$	2.0(2.0)	1.0(1.0)	1.0(2.0)	$1 \cdot 1 (2 \cdot 0)$	3.1 (3.0)
trans-Pent-2-ene $(2\cdot 8)$	$3 \cdot 4$	91.5	$5 \cdot 1$					
cis-Pent-2-ene (9.9)	$3 \cdot 8$	91.7	4.5	$2{\cdot}4~(3{\cdot}0)$	2.0 (2.0)	1.1 (2.0)	2.7 (3.0)

^a Numbers of ¹H atoms on each carbon atom in product, relative to $C(1) = 2 \cdot 0$ for pent-1-ene and $C(2) + C(3) = 2 \cdot 0$ for cis-pent-2-ene. trans-Pent-2-ene was not analysed. Numbering scheme:

penta-1,3-diene on the ZnO catalyst at room temperature predominantly gives the [2H2]-adducts (with a negligible amount of the [2H4]-species). N.m.r. spectroscopic analysis indicates unequivocally the formation of [3,4-2H2]pent-1ene and [1,4-2H2]pent-2-ene. 1,2-Addition of D2 would yield [1,2-2H2]-cis-pent-2-ene whereas 1,4-addition would

¹ P. B. Wells and G. R. Wilson, J. Chem. Soc. (A), 1970, 2443. ² G. F. Pregaglia, G. F. Ferrari, A. Andreetta, G. Capparella, F. Genoni and R. Ugo, J. Organometallic Chem., 1974, 70, 89.

³ K. Kawakami, T. Mizoroki, and A. Ozaki, Chem. Letters, 1976, 847.

⁴ T. Okuhara, K. Tanaka, and K. Miyahara, J.C.S. Chem. Comm., 1976, 42; T. Okuhara and K. Tanaka, ibid., p. 199.

⁵ W. C. Conner, R. A. Innes, and R. J. Kokes, J. Amer. Chem. Soc., 1968, 90, 6858; S. Naito, Y. Sakurai, H. Shimizu, T. Onishi, and K. Tamaru, Bull. Chem. Soc. Japan, 1970, 43, 2274.

nd K. Tamaru, Butt. Chem. Soc. Japan, 1970, 43, 2274.
^e R. L. Burwell, Jr., A. B. Littlewood, M. Cardew, G. Pass, and C. T. H. Stoddart, J. Amer. Chem. Soc., 1960, 82, 6272.
^e T. Okuhara, K. Tanaka, and K. Miyahara, Meeting of the Catalysis Society of Japan, Toyama, Oct. 1977.
^e H. Hattori, Y. Tanaka, and K. Tanabe, J. Amer. Chem. Soc., 1976, 98, 4652.
^e Y. Imizu, H. Hattori, and K. Tanabe, Discussion on Catalysis, Osaka, April 1977.
¹⁰ T. Yamaguchi and J. Hightower, J. Amer. Chem. Soc., 1977, 99, 4201.
¹¹ T. Okuhara, T. Kondo, and K. Tanaka, J. Phys. Chem., 1977, 81, 808.

addition is negligible. As we have inferred previously,¹¹ 1,4-addition on a ZnO catalyst might occur on sites other than those for 1,2- and/or 3,4-addition.

(Received, 16th September 1977; Com. 965.)